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Abstract

Reaction of the Meldrum’s acid derivative 2,2,5-trimethyl-5-(4-pyridyl)-4,6-dioxo-1,3-dioxane with methyl-
lithium in THF/HMPA resulted in formation of the novel pyridyl substituted allene 2,4-bis(4-pyridyl)penta-2,3-
diene. © 2000 Elsevier Science Ltd. All rights reserved.
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The 4-pyridyl substituted Meldrum’s acid derivative 2,2,5-trimethyl-5-(4-pyridyl)-4,6-dioxo-1,3-
dioxane1 reacts with the lithium alkoxide of alcohols1 to give the corresponding 2-(4-pyridyl)propanoate
ester2 (Scheme 1).

Scheme 1.

We sought to extend this reaction to provide a potentially useful route to pyridyl ketone analogues3
by employing an organolithium reagent as a nucleophile. Accordingly1 was treated with methyllithium
using THF as solvent, and the anticipated methyl ketone 3-(4-pyridyl)butan-2-one (3a, R=Me) was
formed, but in low yield (16%). In an attempt to improve the yield of ketone formed, HMPA was
added in order to enhance the nucleophilicity of the organollithium reagent. Interestingly, when this
reaction was carried out at 0°C using HMPA as co-solvent (THF/HMPA=3:2), the novel allene, 2,4-bis(4-
pyridyl)penta-2,3-diene4 was formed as the major product in 73% yield,2 together with only a small
amount of the expected ketone3a (4%). The allene4 had a very simple1H NMR spectrum showing only
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three separate signals, one methyl and two aromatic, due to the symmetry of the molecule. This allene
has a C-2 axis of symmetry due to the perpendicularity of the central�-orbitals and is therefore chiral.3

Formation of this allene was a surprise, and how it is formed is mechanistically intriguing. Although
this clearly involves dimerisation of an intermediate, a carbon atom must have been extruded to give
the odd-numbered 3-carbon allenic unit. We have deduced a mechanism for formation of this allene
that is consistent with literature precedent, and this is shown in Scheme 2. This mechanism involves
generation of a ketene intermediate following attack of methyl lithium at the dioxodioxane ring carbonyl
group. The resultant ketene then undergoes dimerisation via a [2+2] cycloaddition to give the�-lactone.
This �-lactone intermediate then extrudes carbon dioxide to generate the allene. Literature precedent
for this proposed mechanism is as follows. Meldrum’s acid derivatives are known to generate ketenes,
although this usually requires pyrolysis.4 Ketenes are known to dimerise upon heating to produce stable
�-lactones.5 Pyrolysis of the�-lactone ketene dimer is also known to generate allenes.6 Further support
for this mechanism is the finding that tetraphenylallene is formed upon heating diphenylketene at 90°C
in HMPA.7

Scheme 2. Proposed mechanism for generation of the allene4

What is remarkable here is that the pyridyl substituted allene4 has been generated easily at low
temperature, by a sequence of consecutive steps where the literature precedent for each step requires
thermolytic conditions. We attribute the facility of the formation of4 to the electron withdrawing ability
of the 4-pyridyl ring.
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